Frames in right ideals of $C^*$-algebras
author
Abstract:
we investigate the problem of the existence of a frame forright ideals of a C*-algebra A, without the use of the Kasparov stabilizationtheorem. We show that this property can not characterize A as a C*-algebraof compact operators.
similar resources
frames in right ideals of $c^*$-algebras
we investigate the problem of the existence of a frame forright ideals of a c*-algebra a, without the use of the kasparov stabilizationtheorem. we show that this property can not characterize a as a c*-algebraof compact operators.
full textG-frames in Hilbert Modules Over Pro-C*-algebras
G-frames are natural generalizations of frames which provide more choices on analyzing functions from frame expansion coefficients. First, they were defined in Hilbert spaces and then generalized on C*-Hilbert modules. In this paper, we first generalize the concept of g-frames to Hilbert modules over pro-C*-algebras. Then, we introduce the g-frame operators in such spaces and show that they sha...
full text*-frames in Hilbert modules over pro-C*-algebras
In this paper, by using the sequence of multipliers, we introduce frames with algebraic bounds in Hilbert pro-$ C^* $-modules. We investigate the relations between frames and $ ast $-frames. Some properties of $ ast $-frames in Hilbert pro-$ C^* $-modules are studied. Also, we show that there exist two differences between $ ast $-frames in Hilbert pro-$ C^* $-modules and Hilbert $ ...
full textOn ideals of ideals in $C(X)$
In this article, we have characterized ideals in $C(X)$ in which every ideal is also an ideal (a $z$-ideal) of $C(X)$. Motivated by this characterization, we observe that $C_infty(X)$ is a regular ring if and only if every open locally compact $sigma$-compact subset of $X$ is finite. Concerning prime ideals, it is shown that the sum of every two prime (semiprime) ideals of e...
full textOn the Lie ideals of C∗-algebras
Various questions on Lie ideals of C∗-algebras are investigated. They fall roughly under the following topics: relation of Lie ideals to closed two-sided ideals; Lie ideals spanned by special classes of elements such as commutators, nilpotents, and the range of polynomials; characterization of Lie ideals as similarity invariant subspaces.
full textMy Resources
Journal title
volume 42 issue 1
pages 61- 67
publication date 2016-02-01
By following a journal you will be notified via email when a new issue of this journal is published.
Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023